15 research outputs found

    Math Oracles: A New Way of Designing Efficient Self-Adaptive Algorithms

    Get PDF
    In this paper we present a new general methodology to develop self-adaptive methods at a low computational cost. Instead of going purely ad-hoc we de ne several simple steps to include theoretical models as additional information in our algorithm. Our idea is to incorporate the predictive information (future behavior) provided by well-known mathematical models or other prediction systems (the oracle) to build enhanced methods. We show the main steps which should be considered to include this new kind of information into any algorithm. In addition, we actually test the idea on a speci c algorithm, a genetic algorithm (GA). Experiments show that our proposal is able to obtain similar, or even better results when it is compared to the traditional algorithm. We also show the bene ts in terms of saving time and a lower complexity of parameter settings.Universidad de Málaga. Proyecto roadME (TIN2011-28194

    Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems

    Get PDF
    G. Luque, E. Alba, Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems, In Proceedings of Intelligent Networking and Collaborative Systems, pp. 184-191, 2-4 September, 2015, Taipei, Taiwan, IEEE PressThis paper proposes a novel algorithm combining path relinking with a set of cooperating trajectory based parallel algorithms to yield a new metaheuristic of enhanced search features. Algorithms based on the exploration of the neighborhood of a single solution, like simulated annealing (SA), have offered accurate results for a large number of real-world problems in the past. Because of their trajectory based nature, some advanced models such as the cooperative one are competitive in academic problems, but still show many limitations in addressing large scale instances. In addition, the field of parallel models for trajectory methods has not deeply been studied yet (at least in comparison with parallel population based models). In this work, we propose a new hybrid algorithm which improves cooperative single solution techniques by using path relinking, allowing both to reduce the global execution time and to improve the efficacy of the method. We applied here this new model using a large benchmark of instances of two real-world NP-hard problems: DNA fragment assembly and QAP problems, with competitive results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Migrants Selection and Replacement in Distributed Evolutionary Algorithms for Dynamic Optimization

    Get PDF
    Many distributed systems (task scheduling, moving priorities, changing mobile environments, ...) can be linked as Dynamic Optimization Problems (DOPs), since they require to pursue an optimal value that changes over time. Consequently, we have focused on the utilization of Distributed Genetic Algorithms (dGAs), one of the domains still to be investigated for DOPs. A dGA essentially decentralizes the population in islands which cooperate through migrations of individuals. In this article, we analyze the effect of the migrants selection and replacement on the performance of the dGA for DOPs. Quality and distance based criteria are tested using a comprehensive set of benchmarks. Results show the benefits and drawbacks of each setting in dynamic optimization.Universidad de Málaga. Proyecto roadME (TIN2011-28194). Programa de movilidad de la AUIP

    Problem Understanding through Landscape Theory

    Get PDF
    In order to understand the structure of a problem we need to measure some features of the problem. Some examples of measures suggested in the past are autocorrelation and fitness-distance correlation. Landscape theory, developed in the last years in the field of combinatorial optimization, provides mathematical expressions to efficiently compute statistics on optimization problems. In this paper we discuss how can we use optimización combinatoria in the context of problem understanding and present two software tools that can be used to efficiently compute the mentioned measures.Ministerio de Economía y Competitividad (TIN2011-28194

    Solving Multi-Objective Hub Location Problems with Robustness

    Get PDF
    Hub location problems (HLP) are considered in many logistic, telecommunications, and computer problems, where the design of these networks are optimized based on some objective(s) related to the cost or service. In those cases, direct routing between any origin and destination is not viable due to economic or technological constraints. From the seminal work of O'Kelly~\cite{OKelly86}, a huge number of works have been published in the literature. Early contributions were focused on analogue facility location problems, considering some assumptions to simplify the network design. Recent works have studied more complex models by incorporating additional real-life features and relaxing some assumptions, although the input parameters are still assumed to be known in most of the HLPs considered in the literature. This assumption is unrealistic in practice, since there is a high uncertainty on relevant parameters of real problems, such as costs, demands, or even distances. Consequently, a decision maker usually prefer several solutions with a low uncertainty in their objectives functions instead of the optimum solution of an assumed deterministic objective function. In this work we use a three-objective Integer Linear Programming model of the p-hub location problem where the average transportation cost, its variance, and the processing time in the hubs are minimized. The number of variables is O(n4)O(n^4) where nn is the number of nodes of the graph. ILP solvers can only solve small instances of the problems and we propose in this work the use of a recent hybrid algorithm combining a heuristic and exact methods: Construct, Merge, Solve, and AdaptUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Anytime Algorithms for Multi-Objective Hub Location Problems

    Get PDF
    In many logistic, telecommunications and computer networks, direct routing of commodities between any origin and destination is not viable due to economic and technological constraints. Hub locations problems (HLPs) are considered in that cases, where the design of these networks are optimized based on some objective(s) related on the cost or service. A huge number of papers have been published since the seminal work of O’Kelly. Early works were focused on analogue facility location problems, considering some assumptions to simplify network design. Recent works have studied more complex models that relax some of these assumptions and incorporate additional real-life features. In most HLPs considered in the literature, the input parameters are assumed to be known and deterministic. However, in practice, this assumption is unrealistic since there is a high uncertainty on relevant parameters, such as costs, demands or even distances. As a result, a decision maker usually prefer several solutions with a low uncertainty in their objectives functions. In this work, anytime algorithms are proposed to solve the multi-objective hub location problems with uncertainty. The proposed algorithms can be stopped at any time, yielding a set of efficient solutions (belonging to the Pareto front) that are well spread in the objective space.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Path planning with far-away obstacles detection under uncertainty.

    Get PDF
    Nowadays faster terrestrial and space exploration robots are being investigated, in response to the growing demand for faster, more efficient, and cost-effective exploration and research capabilities. For these rapid mobile platforms, the identification and avoidance of far obstacles are critical, since their high speed implies the need to take into account as many near and far obstacles as possible for the global path computation, avoiding any possible accident due to their speed and the computation time of the replanning algorithms. Due to their distance, the far obstacles are not included within the local maps, which are limited by the range of the depth cameras. For these reasons, this paper proposes the use of Artificial Intelligence techniques to detect them from images and estimate their sizes and positions with a certain degree of uncertainty. The detected obstacles will be later included in the global maps, correcting the global path in case it collides with them.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An Efficient QAOA via a Polynomial QPU-Needless Approach.

    Get PDF
    The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum algorithm described as ansatzes that represent both the problem and the mixer Hamiltonians. Both are parameterizable unitary transformations executed on a quantum machine/simulator and whose parameters are iteratively optimized using a classical device to optimize the problem’s expectation value. To do so, in each QAOA iteration, most of the literature uses a quantum machine/simulator to measure the QAOA outcomes. However, this poses a severe bottleneck considering that quantum machines are hardly constrained (e.g. long queuing, limited qubits, etc.), likewise, quantum simulation also induces exponentially-increasing memory usage when dealing with large problems requiring more qubits. These limitations make today’s QAOA implementation impractical since it is hard to obtain good solutions with a reasonably-acceptable time/resources. Considering these facts, this work presents a new approach with two main contributions, including (I) removing the need for accessing quantum devices or large-sized classical machines during the QAOA optimization phase, and (II) ensuring that when dealing with some -bounded pseudo-Boolean problems, optimizing the exact problem’s expectation value can be done in polynomial time using a classical computer.This work is partially funded by Universidad de Málaga, Ministerio de Ciencia, Innovación y Universidades del Gobierno de España under grants PID 2020-116727RB-I00 (funded by MCIN/AEI/ 10.13039/501100011033) and PRX21/00669; and TAILOR ICT-48 Net- work (No 952215) funded by EU Horizon 2020 research and innovation programme. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore